APPLICATION OF THE MONTE CARLO METHOD

TO THE PROBLEM OF FLOW IN THE

BOUNDARY LAYER OF A TWO-DIMENSIONAL

TURBULENT JET

F. N. Yasinskii

UDC 532.526.4

A precise solution is found to the problem of flow in the boundary layer of a two-dimensional turbulent jet. The method of [1] is used here.

The flow of an incompressible fluid in the boundary layer of a two-dimensional turbulent jet is described by the following equations and boundary conditions:

$$u_{\beta} u_{\alpha,\beta} + P_{,\alpha} = \tau_{\alpha\beta,\beta}; \tag{1}$$

$$u_{\sigma,\sigma} = 0; (2)$$

$$\tau_{\alpha\beta} = -l_{\alpha\beta}^2 \ u_{1,2}^2; \tag{3}$$

$$u_{1}|_{\Gamma_{0}} = 1, u_{2}|_{\Gamma_{0}} = u_{1,2}|_{\Gamma_{0}} = u_{1}|_{\Gamma_{1}} = u_{1,2}|_{\Gamma_{1}} = 0$$

$$(4)$$

The summation role has been adopted here with respect to the repetitive Greek letter subscripts which assume the values 1, 2. The symbol after a comma denotes the derivative with respect to the given coordinate and u_{α} are the velocity components. On the basis of the similarity theory, we assume that u_{α} , P, and $x_1^{-1}l_{\alpha\beta}$ are functions of the ratio $\eta=x_1^{-1}x_2$. The flow function will be sought in the form

$$\psi = x_1 F(\eta).$$

Adopting the obvious rules of differentiation

$$A_{.1} = -A_{,\eta} \eta x_1^{-1}; A_{,2} = A_{,\eta} x_1^{-1}$$

and considering that

$$u_1 = \psi_{,2}, \ u_2 = -\psi_{,1},$$

$$l_{\alpha\beta} = \mu_{\alpha\beta} (\eta) x_1,$$

one can reduce systems (1)-(4) to a single third-order ordinary differential equation (a prime sign indicates a derivative with respect to η)

$$Q = \left[(1 - \eta^2) \ \mu_{12}^2 + \eta \left(\mu_{22}^2 - \mu_{11}^2 \right) \right] F''' + \left[(1 - \eta^2) \mu_{12} \ \mu_{12}' \right]$$

$$+ \eta \left(\mu_{22} \ \mu_{22}' - \mu_{11} \mu_{11}' \right) F'' - \frac{1}{2} (1 + \eta^2) F = 0.$$
(5)

The boundary conditions (4) become

$$F|_{\alpha=0} = \eta_0; \ F'|_{\alpha=0} = 1; \ F''|_{\alpha=0} = F'|_{\alpha=1} = F''|_{\alpha=1} = 0.$$
 (6)

Here $\alpha = (\eta - \eta_0)/(\eta_1 - \eta_0)$; $\alpha \in [0; +1]$, while parameters η_0 and η_1 define the location of boundaries Γ_0 and Γ_1 . To conditions (6) we add two others:

V. I. Lenin Power Institute, Ivanovo. Translated from Inzhenerno-Fizicheşkii Zhurnal, Vol. 22, No. 4, pp. 725-728, April, 1972. Original article submitted June 2, 1971.

^{© 1974} Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

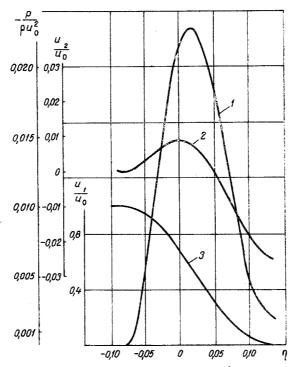


Fig. 1. Functions of $\eta = x_2/x_1$: 1) $-P/\rho u_0^2$; 2) u_2/u_0 ; 3) u_1/u_0 (given: $\mu_{11} = 0.030$, $\mu_{12} = \mu_{21} = 0.014$, $\mu_{22} = 0.020$, $\nu = 50$; obtained: $\eta_0 = -0.0776$, $\eta_1 = +0.1382$, $k_0 = -130.6$, $k_1 = +66.51$).

$$F'''|_{\alpha=0}=k_0; F'''|_{\alpha=1}=k_1,$$

where k₀, k₁ are constants not yet known.

The solution to the boundary-value problems (5)-(6) will be sought in the form of a polynomial

$$F = \varphi_{-1} + \varphi_0 \alpha + \frac{1}{2} \varphi_1 \alpha^2 + \frac{1}{3} \varphi_2 \alpha^3 + \frac{1}{4} \varphi_3 \alpha^4 + \frac{1}{5} \varphi_4 \alpha^5 + \frac{1}{6} \varphi_5 \alpha^6, \tag{7}$$

whose coefficients are defined as follows:

$$\begin{aligned} \phi_{-1} &= \eta_0, \ \phi_0 = \Delta = \eta_1 - \eta_0, \ \phi_1 = 0, \ \phi_2 = \frac{1}{2} \ \Delta^3 \, k_0, \\ \phi_3 &= \left[\ -10 + (k_1 - 3k_0) \ \frac{\Delta^2}{2} \right] \, \Delta, \\ \phi_4 &= \left[15 + (3k_0 - 2k_1) \frac{\Delta^2}{2} \right] \, \Delta, \\ \phi_5 &= \left[\ -6 + (k_1 - k_0) \ \frac{\Delta^2}{2} \right] \, \Delta. \end{aligned}$$

In this case the boundary conditions are satisfied automatically and the four parameters η_0 , η_1 , k_0 , k_1 remain unconstrained.

In accordance with [1], the values of these parameters at which the quantity

$$\Phi = N^{-1} \sum_{s}^{N} Q_{s}^{2} \tag{8}$$

becomes minimum will be considered optimal. Here N is the total number of control points on the interval $[\eta_0, \eta_1]$. Their coordinates were calculated by the formula

$$\eta^{(s)} = \eta_0 + sN^{-1}(\eta_1 - \eta_0),$$

with s denoting the consecutive number of a point and Q_S denoting the magnitude of the error incurred by inserting polynomial (7) into Eq. (5) at $\eta = \eta^{(S)}$. In accordance with [3], the following values were taken for $\mu_{\alpha\beta}$: $\mu_{11} = 0.03$, $\mu_{12} = 0.014$, $\mu_{22} = 0.02$. Equation (8) was minimized by the method of random tracking [2]. On the basis of optimal values for η_0 , η_1 , k_0 , and k_1 with the aid of expressions

$$\begin{split} u_{1}/u_{0} &= F'; \ u_{2}/u_{0} = \eta F' - F; \\ \frac{P}{\rho u_{0}^{2}} &= 2 \int\limits_{\eta_{0}}^{\eta} \left[\frac{1}{2} \eta F + \eta \mu_{12} \left(\mu_{12}' F'' + \mu_{12} F''' \right) \right. \\ &\left. - \mu_{22} \left(\mu_{22}' F'' + \mu_{22} F''' \right) \right] F'' \ d\eta \end{split}$$

curves have been plotted as shown in Fig. 1. They come close to the empirical curves in [3].

Evidently, a further refinement is possible by increasing the number of terms in expression (7) and by changing conditions (6) to more stringent ones (with transverse flow also taken into account).

NOTATION

are the Cartesian coordinates; x_1, x_2 are the velocity components; u_1, u_2 is the pressure, referred to a plane surface; is the dimensionless coordinate; $\eta = x_2/x_1$ are the inside and outside boundary of a layer; Γ_0 , Γ_1 are their respective coordinates; η_0, η_1 $\alpha = (\eta - \eta_0)/(\eta_1 - \eta_0)$ is the coordinate referred to interval [0, +1]; $\psi = \mathbf{x}_1 \mathbf{F}(\boldsymbol{\eta})$ is the flow function; $\tau_{\alpha\beta} = -l_{\alpha\beta}^2 u_{1,2}^2 = -\mu_{\alpha\beta}^2(\eta) x_1^2 u_{1,2}^2$ are the components of the tensor of turbulent stresses, referred to the is the power polynomial representing the solution; $\varphi_{-1}, \varphi_0, \varphi_1, \ldots, \varphi_5$ are the coefficients of the power polynomial; is the functional to be minimized.

LITERATURE CITED

- 1. F. N. Yasinskii, Izv. Akad. Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6 (1968).
- 2. L. A. Rastrigin, Statistical Tracking Methods [in Russian], Nauka, Moscow (1968).
- 3. A. S. Ginevskii, Theory of Turbulent Jets and Wakes [in Russian], Mashinostroenie, Moscow (1969).